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Abstract. Two simple rules are derived for obtaining the solution of a problem with correlated
multiplicative and additive noise in terms of the results for systems with non-correlated noise. It is
shown that the mean free passage time decreases as the correlation time increases, and its influence
becomes important for not-too-small correlation times.

A variety of phenomena in physics, chemistry and biology are modelled by the stochastic
differential equation

dx

dt
= f (x) + g(x)ξ(t) + η(t) (1)

which in particular describes the overdamped one-dimensional motion of a particle in an
external fieldU(x), wheref (x) = − dU

dx , subject to multiplicative noiseξ(t) and additive
noiseη(t) [1].

Additive noise arises, for example, from the fast dynamics of other (additional tox) degrees
of freedom, or from the non-zero temperature of a system (thermal noise). Alternatively,
multiplicative noise is related to the stochastic nature of external fields or boundary conditions.
Both types of noise have been intensively studied in different problems, for example chemical
reactions, electrical circuits, liquid crystals, hydrodynamic systems, lasers, plasmas, nuclear
reactions and biological systems (see [2] and references therein).

The simplest assumption is that bothξ(t) andη(t) describe Gaussian white noise with
zero mean and correlations

〈η(t)η(s)〉 = 2Dδ(t − s) 〈ξ(t)ξ(s)〉 = 2αδ(t − s). (2)

By use of the Stratanovich interpretation of the stochastic differential equation (1) [3], the
Fokker–Planck equation for the probability functionP(x, t) corresponding to (1) and (2) is
given by [4–7]

∂P

∂t
= − ∂

∂x
[A(x)P ] +

∂2

∂x2
[B(x)P ] (3)

where

A(x) = f (x) + αg(x)
dg

dx
B(x) = D + αg2(x). (4)

An important special case of (1) is the bistable potentialU(x) = − ax2

2 + bx4

4 with
stochastically varying barrier curvature, i.e., where

f (x) = ax − bx3 g(x) = x. (5)
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In the absence of additive noise,D = 0, equations (3)–(5) can be solved exactly [8],
while in the presence of both noises,D 6= 0 andα 6= 0, the analysis has been restricted
to the stationary solution,Pst (x) ∼ B−1(x) exp(− ∫ x A(y)

B(y)
dy) and its first moments [7], the

correlation function [7], and the mean free passage time (MFPT) [2]. In contrast to additive
noise, multiplicative noise shifts the stationary points of a deterministic system (noise-induced
transition [9]). Instead of the conditionf (x) = 0, these points are determined from the extrema
of Pst (x), i.e. from the condition

f (x)− α
2

d

dx
[g2(x)] = 0 (6)

which, in the case of the bistable potential (5), reduces to

bx3 + (α − a)x = 0. (7)

Another important characteristic of the dynamics is the MFPT,T (x2; x1), to reach the
pointx2 starting from the pointx1 which is defined byPst (x) [1],

T (x2; x1) =
∫ x2

x1

dx

B(x)Pst (x)

∫ x

−∞
Pst (y) dy. (8)

The analysis of (8) for different values ofD, α and the energy barrier has been performed
in [4–6]. It turns out that additional multiplicative noise results in a decrease of MFPT compared
with the MFPT for additive noise alone, i.e. multiplicative noise ‘helps’ the tunnelling through
the barrier.

Up to this point, it has been assumed that additive and multiplicative noise are not
correlated, i.e.〈ξ(t)η(s)〉 = 0. There are, however, some situations where the latter condition
is violated. This happens when both noises have the same origin, as in laser dynamics [10], or
when strong external noise leads to an appreciable change in the internal structure of a system
and hence in internal noise. The influence of the correlation between noises on the dynamics
of a system has recently become the objective of much research [11–20], some results being
quite cumbersome.

In this letter we derive two simple rules for the description of the dynamics of a system
with correlated noise in terms of that with no such correlations. Let us first assume that additive
and multiplicative noise are delta-correlated with the parameterλ measuring the strength of
these correlations:

〈ξ(t)η(s)〉 = 2λ
√
αDδ(t − s). (9)

Rule 1. To obtain the Fokker–Planck equation for a system with correlated noise described
by equations (1), (2) and (9) one replacesg(x) andD in the Fokker–Planck equations (3) and
(4) according to the following rule:

g(x) −→ g(x) + λ

√
D

α
D→ D(1− λ2) (10)

(the caseλ = 1 has to be considered separately).

The proof of (10) is based on the observation [21] that equation (1) can be rewritten as

dx

dt
= f (x) +

[
g(x) + λ

√
D

α

]
ξ(t) + ς(t) (11)

where

ς(t) = η(t)− λ
√
D

α
ξ(t). (12)
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One can easily confirm that〈ς(t)ς(s)〉 = 2D(1− λ2)δ(t − s) and〈ς(t)ξ(s)〉 = 0, i.e.,
the problem with correlated noise is reduced to the original problem of non-correlated noises
and becomes identical to it after performing the transformations (10).

Hence, in the case of delta-correlated noise, the functionsA(x) andB(x) in the Fokker–
Planck equation (3) can be obtained by inserting (10) into (4), which gives

A(x) = f (x) + α

[
g(x) + λ

√
D

α

]
dg

dx
B(x) = D + αg2(x) + 2λ

√
Dαg(x) (13)

or, for the bistable potential (5),

A(x) = (a + α)x − bx3 + λ
√
Dα B(x) = D + αx2 + 2λ

√
Dαx. (14)

The extrema ofPst (x) for the correlated noise can be found by inserting (10) into (6) or
(7), which results in

f (x)− α
2

d

dx

[
g(x) + λ

√
D

α

]2

= 0 (15)

and

(a − α)x − bx3− λ
√
Dα = 0. (16)

In contrast to the case of non-correlated noise, the positions of the extrema now depend
on the additive noise as well. The MFPT defined by equations (8) and (13) increases withλ.

Equations (13)–(16) are identical to the appropriate equations of [15] which have been
obtained after a quite complicated derivation of the Fokker–Planck equation for correlated
noise rather than by the simple substitution of (10).

So far we have assumed delta-correlations between multiplicative and additive noise.
More complicated ‘coloured’ correlation is characterized by the non-zero correlations timeτ .
We consider the exponential Gaussian correlation of the form

〈η(t)ξ(s)〉 = λ
√
Dα

τ
exp

(
−|t − s|

τ

)
(17)

while the autocorrelation functions (2) remain delta-correlated.
Derivation of the Fokker–Planck equation for coloured noise is a complicated problem

[3, 22] which has an exact solution only in the simplest cases. For example, for the linear
stochastic equation,

dx

dt
= −ax + ζ(t) +ψ(t) (18)

whereψ(t) is the white noise of strengthD andζ(t) is the exponentially correlated Gaussian
noise

〈ζ(t)ζ(s)〉 = Q

τ
exp

(
−|t − s|

τ

)
(19)

the exact stationary solution of the Fokker–Planck equation has been found [6]. It turns out that
this solution can be found in terms of that for the case of two white noise with strengthsD and
Q by the simple transformationQ→ Q

1+aτ .Quite surprisingly, such a simple rule also applies
to our case. Indeed, if one compares the approximate Fokker–Planck equation (equation (22)
in [19]) for the case (17) of the exponentially correlated multiple and additive noises with the
Fokker–Planck equations (3), (13) for the case of delta-correlations, one sees that the former
can be obtained from the latter by the simple replacementλ −→ λ

1+2aτ . Therefore, at least in
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the framework of the Hanggiet al [23] approximate procedure used in [19], one arrives at the
following.

Rule 2. In order to derive the Fokker–Planck equation for a system with exponentially
correlated multiplicative and additive noise (equation (17)), one replacesλ in the Fokker–
Planck equation for the delta-correlated noise (equation (13)) according to the following rule:

λ→ λ

1 + 2aτ
. (20)

Renormalizations similar to (20) have been used before for comparison of coloured and
white noise when either multiplicative or additive noise was present. Path integral analysis
shows [24] that the stationary distribution for the linear problem (f (x) = −ax, g(x) = 1,
η = 0 in (1)) with coloured multiplicative noise can be obtained from that with white noise
by replacingα by α(1 + aτ)−1. Likewise, in the adiabatic approximation for a small noise
intensity of additive noise, (g = 0 in equation (1)), the influence of the correlation timeτ can
be taken into account [25] by replacingD byD [1 − τ 〈f ′(x)〉]−1. Similar renormalizations
can be performed for the underdamped motion [26].

Substituting (20) into (16) yields the extrema ofPst (x) in the case being considered,
which was previously obtained by quite a complicated way in [19]. However, the MFPT has
not yet been calculated. The explicit expression for the MFPT for correlations of the form
(17) can be obtained by using the transformation (20) in the MFPT for the delta-correlated
case (equation (15) in [19])). Without rewriting this cumbersome formula, one immediately
concludes from (20) that:

(1) The correlation timeτ influences the MFPT in the opposite direction compared withλ,
i.e. the MFPT decreases whenτ increases.

(2) The influence ofτ becomes important for not-too-smallτ (� 1
2a ), i.e., whenτ becomes

large compared with the characteristic timea−1 of the deterministic motion.

In conclusion, it is shown that the influence of the correlations between multiplicative and
additive noise on the stastistical properties of classical systems can be easily found from the
known properties of non-correlated systems. The MFPT is considered as an example.
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